更新时间:2022-10-31 来源:黑马程序员 浏览量:
Range范围分配策略是Kafka默认的分配策略,它可以确保每个消费者消费的分区数量是均衡的。
注意:Rangle范围分配策略是针对每个Topic的。
配置
配置消费者的partition.assignment.strategy为org.apache.kafka.clients.consumer.RangeAssignor。
算法公式
n = 分区数量 / 消费者数量
m = 分区数量 % 消费者数量
前m个消费者消费n+1个
剩余消费者消费n个
RoundRobinAssignor轮询策略是将消费组内所有消费者以及消费者所订阅的所有topic的partition按照字典序排序(topic和分区的hashcode进行排序),然后通过轮询方式逐个将分区以此分配给每个消费者。
配置
配置消费者的partition.assignment.strategy为org.apache.kafka.clients.consumer.RoundRobinAssignor。
从Kafka 0.11.x开始,引入此类分配策略。主要目的:
1. 分区分配尽可能均匀
2. 在发生rebalance的时候,分区的分配尽可能与上一次分配保持相同没有发生rebalance时,Striky粘性分配策略和RoundRobin分配策略类似。
上面如果consumer2崩溃了,此时需要进行rebalance。如果是Range分配和轮询分配都会重新进行分配,例如:
通过上图,我们发现,consumer0和consumer1原来消费的分区大多发生了改变。接下来我们再来看下粘性分配策略。
我们发现,Striky粘性分配策略,保留rebalance之前的分配结果。这样,只是将原先consumer2负责的两个分区再均匀分配给consumer0、consumer1。这样可以明显减少系统资源的浪费,例如:之前consumer0、consumer1之前正在消费某几个分区,但由于rebalance发生,导致consumer0、consumer1需要重新消费之前正在处理的分区,导致不必要的系统开销。(例如:某个事务正在进行就必须要取消了)
【AI设计】北京143期毕业仅36天,全员拿下高薪offer!黑马AI设计连续6期100%高薪就业
2025-09-19【跨境电商运营】深圳跨境电商运营毕业22个工作日,就业率91%+,最高薪资达13500元
2025-09-19【AI运维】郑州运维1期就业班,毕业14个工作日,班级93%同学已拿到Offer, 一线均薪资 1W+
2025-09-19【AI鸿蒙开发】上海校区AI鸿蒙开发4期5期,距离毕业21天,就业率91%,平均薪资14046元
2025-09-19【AI大模型开发-Python】毕业33个工作日,就业率已达到94.55%,班均薪资20763元
2025-09-19【AI智能应用开发-Java】毕业5个工作日就业率98.18%,最高薪资 17.5k*13薪,全班平均薪资9244元
2025-09-19